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SINGULAR PERTURBATION TECHNIQUES
FOR REAL TIME AIRCRAFT TRAJECTORY
OPTIMIZATION AND CONTROL

Anthony J. Calise* and Daniel D. Moerder "
Drexel University, Philadelphia, PA. 19104

SUMMARY

This study examines the usefulness of singular perturbation methods
for developing real time computer algorithms to control and optimize
aircraft flight trajectories. A minimum time intercept problem using F-8
aerodynamic and propulsion data is used as a baseline. This provides a
framework within which issues relating to problem formulation, solution
methodology and real time implementation are examined. Theoretical
questions relating to separability of dynamics are addressed. With respect
to implementation, situations leading to numerical singularities are iden-—
tified, and procedures for dealing with them are outlined. Also, parti-
cular attention is given to identifying quantities that can be precomputed
and stored, thus greatly reducing the on-~board computational load. Numeri-
cal results are given to illustrate the minimum time algorithm, and the
resulting flight paths. An estimate is given for execution time and

storage requirements .

*
Associate Professor, Dept. of Mechanical Engineering and Mechanics

+ .
Graduate Research Assistant
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SECTION 1

INTRODUCTION

This report documents the derivation and evaluation of an on-line
algorithm for minimum-time intercept. An approximation to the solution
of the minimum~time intercept problem, resulting in a feedback control
law, was derived using singular perturbation theory. The resulting
control logic was evaluated using a model for the F-8 aircraft dynamics.

The singular perturbation method is an order reduction procedure
where a system's dynamics are separated into fast and slow modes. There
are two major benefits. First, higher-order problems can be approximated
by a series of lower-order omes; and second, numerically "stiff" systems,
having extreme differences in their modal behavior are solved on separate
time scales.

Applications of singular perturbation theory to flight mechanics
problems have, to date, centered primarily on aircraft trajectory optimiza-
tion. In the early seventies, a number of papers appeared in which energy
state and reduced order modelling, with separate boundary layer correction
terms, were employed to solve a number of flight control optimization
problems [1-6]. Matched asymptotic expansions were employed somewhat later
in solving the minimum-time-to-climb problem, observing that the first
order approximation matched well with the numerical solution obtained for
the full order problem using a steepest descent technique [7]. Singular
arcs have also been studied in the minimum-time-to-climb problem [8, 9].

In a more recent sequence of papers, complete time scale separation
has been applied in order to obtain feedback control solutions. Problems
studied this way include the vertical plane minimum time and fuel problems

and those involving weighted combinations of the two [10-15]. Feedback



control of a missile in the horizontal plane was examined in [16]. The
three-dimensional minimum-time interception problem was examined by
patching together two~-dimensional subproblems in [17]. Under a NASA-sup-
ported research effort that paralleled this effort, trajectory optimization
in the long range, three-dimensional minimum-time intercept problem has
been studied [18]. Singular perturbation theory has also been found

useful in differential game problems ([19-21]. The results derived

in this study are mainly based on the approach in [12].

The research described in this report resulted in several extensions
in the '"state of the art' for the three-dimensional minimum-time interception
problem:

1. This work provides solutions for both long and short range cases,

with short range cases being characterized by the lack of a
maximum velocity cruise arc.

2. A boundary layer matching criterion was derived such that the
terminal boundary layer matching conditions could be calculated
off=-line, thus eliminating the problem of attempting to backwards
integrate the terminal boundary solution on-line. This has been
identified as one of the major stumbling blocks encountered in
the application of singular perturbation theory [22]. Indeed,
in the short range case, matching between initial and terminal
layer arcs is the key issue to be resolved in solving the problem.

3. The ordering and separation of energy and heading rate dynamics
has been defined and justified for this problem, where range to
interception is sufficiently large that optimal trajectories are
dominantly characterized by climb and descent, rather than by
turning. It should be noted that the ordering in this report is
the reverse of that used in [1] and [10]}, and is due to the pre-

sence of relative position dynamics in the model.



4. A detailed analysis has been made of issues pertaining to the
separation of altitude and flight path angle dynamics, Optimiza-
tion of altitude and flight path angle dynamics is a classical
problem in flight mechanics, which to date had not yielded a
solution suitable for on-line implementation. The essential
problem is that these dynamics are highly coupled when considered
apart from position and energy dynamics. It is shown that the
dynamics, while not completely separable, can be approximated
by singular perturbation methods with the inclusion of a penalty
term on flight path angle in the performance index.

5. The control algorithm was implemented as a flight director in the
F-8 real time simulator at NASA Langley. Results of this evalua-
tion are given in [23], and a NASA technical report is currently
being prepared on this toplc. The major issues relating to real
time implementations have been addressed as part of the research
effort.

The organization of this report is as follows. Section 2 describes

the problem formulation and summarizes the zero order singular perturbation
solution. Section 3 gives a summary of the on-line control logic, describing
the practical issues encountered during implementation of the control law.
Section 4 describes the point-mass model of the F-8 aircraft employed in
generating numerical results. Section 5 presents numerical results for this
aircraft. Section 6 gives the conclusions and recommendations for future
work. Detailed derivations of the control solutiom presented in Section 2 may
be found in Appendices A and B, The first deals with position, energy and
heading dynamics, and the second, with altitude and flight path angle
dynamics. Appendix C presents the analysis relating to separation and

ordering of energy and heading rate dynamics. Appendix D presents a means



by which the altitude and flight path angle dynamics can be analyzed on
separate time scales, and gives a detailed analysis of the issues involved.

Appendix E provides a desecription o

B

1d justification for a procedure
for minimizing a Hamiltonian function with one unknown adjoint variable,
employed several times in the analysis in Appendices A and B. A detailed

description of the measures taken to suppress numerical singularities from

the computed control solution is given in Appendix F,
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SYMBOLS

Drag Coefficient
Zero Lift Drag Coefficlent

Lift Coefficient
Slope of Lift Coefficient Curve, 1l/rad

Drag, N

Drag for L = W, N

Total Energy per Unit Weight, m
Pseudo Cruise Energy Level, m

Long Range Cruise Energy Level, m

Gravitational Constant, m/s2
Hamiltonian
Altitude, m

Induced Drag Parameter

Flight Path Angle Welghting Parameter in Cost Function

Lift, N

Vertical Lift Component, N
Horizontal Lift Component, N
Mach Number

Mass, kg

Energy State and Costate Eigenvalues, 1l/s

Heading State and Costate Eigenvalues, 1l/s

Dynamic Pressure, N/m2

Range, m

Reference Area, m2

Thrust, N

Time, s

Time-To~Go, s

Velocity, m/s

Weight, N

Horizontal Position Variables, m
Angle of Attack, rad

Zero Lift Angle of Attack, rad



Symbols (cont.)

B = Heading, rad
Y = Flight Path Angle, rad
§C.) = Perturbation Associated with a Particular Variable

€ = Perturbation Parameter
n = Induced Drag Parameter

A = Line-of~-Sight Angle, rad
A

= Energy Costate, s/m

By
Ah = Altitude Costate, s/m
3
A, A = Horizontal Position Costates, s/m
X Yo
AB = Heading Costate, s/rad
2
AY = Flight Path Angle Costate, s/rad
4
u = Bank Angle, rad
p = Air Density, kg/m3
T = Stretched Time Scale, s
Typ T, = Time Constants, s

Subscripts

c = Climb

d = Descent

D = Desired

f = Final

P = Relating to Proportional Vertical Lift
max = Maximum

min = Minimum

T = Target

o = Quter Solution Variable or Solution

1, 2,3,4 = Boundary Layer Variables or Solution

Superscripts

(.) = Nominal Value

o = Artificially Perturbed Variable



SECTION 2
PROBLEM FORMULATION AND SOLUTION

This section summarizes the problem formulation and the resulting
singular perturbation solution. Derivations of the results summarized
here may be found in Appendices A and B. Numerical results are given

to illustrate the control solution for a variety of flight conditions.

2.1 Problem Formulation

The equations of motion are written in a horizontal, target centered

coordinate frame:

X = V cos vy cos B (2.1)
v = V cos y sin B - VT cos Yy 2.2)
eE = (T-D) V/W (2.3)
szé = L sin u/m V cos vy (2.4)-+
EBﬁ = V sin vy 2.5)
64? = (L cos py=-Wcos y)/mV (2.6)

The variables in (2.1-2.6) are defined with the aid of Figure 1, where the
subscript "T" is used to designate the target. These equations are valid
for a flat earth, with thrust (T) directed along the flight path and

constant weight. Drag (D) is assumed to have a conventional parabolic form

2

D = gs CD=QS(CD+nCLaa) 2.7)
which can also be written as
D =qs (c,+ KL2/qs), q = ov2/2 (2.8)

where q is the dynamic pressure, p is the air density and

K= n/CL (2.9)
o

L = gs CL = qs(CLa a) (2.10)
The variable E is the total aircraft energy (kinetic and potential) per unit

weight.

+In this report, w/xyz is to be interpreted as w/(xyz).



Figure 1. Horizontal plane intercept geometry



E=h + V*/2g (2.11)

where h is the aircraft altitude. The control variables are aircraft 1ift
(L), bank angle (M) and thrust (T). The objective is to find the controls
L, ¥, T that minimize

t
J= fof (1 + k sin®y)dt , k 3 0 (2.12)

where k = 0 for minimum time. The minimization is subject to the following

state and control variable constraints:

LWG . (2.13)

L<qC o (2.14)
a

Tn® MV 2T <T (G, V) (2.15)

q92q > MM () (2.16)

where G is the maximum load factor, & ax is the stall angle of attack,
max
Tmin and Tmax are the minimum and maximum thrust levels that are functions
of aircraft altitude and velocity (V). The boundary conditions are such that

the initial aircraft state is fully specified, and we require

x(tf) = Y(tf) =0 s h(tf) = hT(t (2-17)

£
for intercept, when hT(cf) is taken as the projected target motion in

altitude

hT(tf) = hT(O) + (VT sin YT) te (2.18)

The objective here in using singular perturbation methods is to approxi-
mate the open loop optimal control solution with a near-optimal control
solution in feedback form. Towards this end, the equations of motion in
(2.1-2.6) have been scaled by powers of e, which imply that a natural separa-
tion in the system dynamics exists. Ideally, one would like to identify ¢
with small physical system parameters. This can be done with varying degrees
of success by writting the equations of motion in a non-dimensional form.

An example is given in [15]. The ordering selected in (2.1-2.6) is based
on an understanding of aircraft dynamics, experience with problems in
trajectory optimization, and the earlier results of researchers in this
field. The approach here is to seek a solution for e=1 by an expansion

about £=0, While this departs from the spirit of asymptotic expansions,




where € is regarded as "sufficiently small", the accuracy of the resulting
solution depends more on the degree to which the dynamics are separated.
The particular ordering selected here can be argued on a physical
basis. Long range optimal trajectories are generally made up of climb,
cruise and descent arcs. The climb and descent arcs can be considered as
boundary layers needed to satisfy initial and terminal constraints on
energy and altitude, during which energy is first increased (to the cruise
energy) and then decreased (to satisfy the terminal altitude constraint).
Initial transitions to the optimal climb path and the optimal heading for
intercept take place on a much shorter time scale, in comparison to the
time needed to gain or lose energy. Selecting 8 dynamics as slower than
h and y dynamics allows for high and low speed yo-yo maneuvers during the
initial turn at large heading errors. This is illustrated in the results
of Section 2.4. A detailed analysis of the ordering of E, 8 and h, vy dy-

namics is given in Appendices C and D.

2.2 Outer Solution

In the outer solution, the controlled aircraft is assumed to be trav-
elling on a fixed course at a constant speed, as can be seen by letting
€ +Q in (2.1-2.6). The problem is reduced to optimal intercept in the hori-
zontal plane. The state variables are x and y, and the controls are B,
h and E. In order to satisfy the intercept requirement (see Fig. 1), we

must have

Vsin(B-A) = V., cos Yp cos A (2.19)

T
or, in other words, there is no relative motion allowed perpendicular to the
horizontal plane line-of-sight axis. The optimal controls h° and E0 are

determined as

h , E = arg max (V) (2.20)
o o h,E

where the maximization takes place subject to the constraints in (2.13-2.16)

and subject to
T =D, p =0,y =0,L =¥ (2.21)
where Do is drag for L = W

Do= gs CD + KWZ/qs 2.22)
o

and

2 = -]
q=pMm)V/2 , V = /Ig(E h) (2.23)

10




These constraints arise from setting e€+0 in (2.2-2.6). The cruise point
(2.20) for the F-8 aircraft is displayed in Figure 2, superimposed on the
aircraft's flight envelope. It should be noted that, in a higher perfor-
mance aircraft for which the q or Mach boundaries would be encountered
while T > D, the solution would lie at the intersection of the constraint
boundary with the zero energy rate boundary. This is illustrated for an
F-4 aircraft in [25].

The optimal cruise heading (Bo)is computed using (2.19):

. =1
Bo sin {VT cos yq cos AV 4+ A (2.24)
The costates Ay and A_ , assoclated with the horizontal position dynamics

in the outer soiution, 8hile not explicitly appearing in the outer control

solution, are used in subsequent boundary layer solutions. These take the

form
Axo = —cosBO/(Vo-VT cos Yy cos Bo) (2.25)
AyO = —sinBo/(Vo—VT cos Yp cos B ) (2.26)

It should be noted that the cruise solution for ho and Eo is indepen-
dent of target motion and intercept geometry. This allows these quantities
to be calculated off-line and stored. The only outer solution calculations

performed on-line are (2.24-2.26).

2.3 First Boundary Layer Solution

The first boundary layer solution addresses energy dynamics. The

constraints
b = 0, Y] = o, Ll =W (2.27)
in addition to (2.13-2.16), arise when the time transformation ¢ = t/e
is introduced and we let e + 0. The controls are T, h, and 8. The optimal

heading (Bl) is identical to that for the outer solution. Since T appears
linearly in the dynamics, we have

T1 = Tmax(h,V) ’ AEl <0 (2.28)

T1 = Tmin(h’v) s XEl >0 (2.29)

11



where AE is the energy costate variable. The solutions in (2.28) and (2.29)

essentiaily correspond to climb and descent. Optimization with respect to h
yields

(T -DO)V
h1 = arg min{ v } (2.30)
h o
E=E
current
T>D
for ascent, and
—(T -D )V
h, = arg min{—2o—_°} (2.31)
h o
E= Ecurrent
T <D

for descent.

The climb path to cruise for the F-8 is superimposed on the aircraft
flight envelope as a bold line in Figure 2. The optimal descent path is
along the Qpax boundary. The expression for the first boundary layer
costate 1is
A, = —WHO(E,hl)/Vl(Tl-DO) (2.32)

Ey

where HO(E, hl) is the outer solution Hamiltonian ewvaluated at the first

boundary conditions:

Ho(E’hl) = {lxo V cos B + Ayo (Vsing - VTcosyT) + 1} (2.33)

E
current

= hl
Since the solution for hl(E) is independent of target motion, it can

be precomputed and stored as a function of E. Only the costate variable

in (2.32) is computed on-line.
2.4 Second Boundary Layer

This boundary layer is obtained by introducing the time transformation

T = t/e2 and letting €+0. This results in the constraints:

2
v, =0 , L= ng + W (2.34)

where L is the total 1lift and L22 is the horizontal 1lift component. The

controls in this boundary layer are T, h, and L22. Assuming that all turning

takes place near the initial time where AE < 0, the optimal thrust is
1
T2 = Tmax (h2’ VZ) (2.35)

12
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Figure 2. Flight envelope for the F-8 aircraft.



where h2 is defined by
h, = arg min {-p /KV H1(E,h,B)} (2.36)
h E=E
current
B = Bcurrent

Hl(E; h, B) is the first boundary layer Hamiltonian evaluated at current

values of E, h and B. It is expressed as

Hl(E’ h, B) kx V cos B + Ay [VsinB - V., cos YT] +

T
(o] o

AEI (T—DO)V/W + 1 (2.37)

The solution for L22 is analytic, and is given by

L,, = V- qs W Hl(E,h,B) /VKAE . sign (BO-B) (2.38)

22 1

After performing the minimization in (2.36), the heading costate variable
is computed using

A, = =2 (E,h,BR) mV/L (2.39)
8, 5 2| 4 ay

The calculations in (2.36~2.39) must be performed on line. To accelerate
the minimization in (2.36), which is performed each time the control
solution is updated, the solution from the previous time instant is used
as a starting point.

Numerical results for the F-8 aircraft are given in Figures 3 and 4.
These display L22 and h2, respectively, as functions of AB = BO—B for several
values of E. It can be seen from the figures that, at all energy levels,

L22 -0 and h2 - hl as AB-+). This type of asymptotic behavior is necessary

for a valid singular perturbation solution., Note also that at higher energies,
h2 does not digress very far from hl and thatL22 even for large heading

errors, is significantly below Lmax' This indicates that, at these higher
energies, the zero-order solution attempts to preserve the combination of

energy rate and closure rate from the first boundary layer solution. At

low energy levels the situation is considerably different, with emphasis

placed on rapidly reducing heading error, Horizontal 1lift is saturated before

AB reaches 1.2 rad. For larger heading errors, h2 increases so that the

14
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aircraft is driven to the corner velocity for that energy level. At a
midrange energy, priorities are more evenly mixed. The solution for h2
remains close to h; longer than in the low energy case. Also note that

L22 can take on both saturated and nonsaturated values after encountering

the maximum 1lift constraint boundary. These results illustrate the trade-off
between energy rate, closure rate and turn rate that takes place in the

second boundary layer solution.

2.5 Third Boundary Layer Solution
The third boundary layer addresses the altitude dynamics. It arises

from introducing the time transformation 1 = t/e3 and letting € + 0. The

vertical lift L13 for this boundary layer is constrained to be

L13 = Wcos v (2.40)

Due to non-zero values of y, the penalty term k s:Ln2 v in (2.12) has an
effect on the solution for the third and fourth boundary layers. The
controls here are horizontal 1lift (L23) and y. The zero-order solution

for L is given by

23
L23 = min {L2max’ L22/cos v} (2.41)
where
_ 7 _ 2
L2max - Lmax L13 (2.42)

It can be seen that L23 -+ L22 as vy + 0 which is the constrained value

for vy in the second boundary layer. The expression for y3 is

Y3 = arg max {sin y/Hz(h,E,B,Y)} +sign (hz-h) (2.43)
Y

where H2 is the second boundary layer Hamiltonian evaluated at the current

conditions for its arguments:

Hz(h,E,B,y) = (AxocosB + AyosinB)V cos y - Ayo v

T SO Yq

+ A (T-D)V/W + A

L g/WV cos v + 1 + ksinZY (2.44)
El Bz 23

Numerical results for Y3 as a function of altitude error for zero
heading error is shown in Figure 5. The effect of the parameter k is

also shown. Note that Yg 0 as h2 -+ h. and that, as might be expected,

1
increasing k decreases the magnitude of Y, at all flight conditiomns.,

The costate for this boundary layer A‘h is determined from
3
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Ah3 = - Hz(h,E.B,Y3)/V sin v, (2.45)

2,6 Fourth Boundary Layer Solution
In the fourth boundary layer, the vertical and horizontal components

of 1ift (L14 and L24,
angle dynamics. As long as L g Lmax’ the 1lift components are:

respectively) are refined to reflect the flight path

L,, = Wecos vy - H3(h,E,S,Y)qu/AE KV2 cos v (2.46)

14 1

2
Ly, = ABZ gqs/ZAEl KV™ cos v (2.47)

These are used to define the final lift and bank angle commands:

L = v{z + 1.2 (2.48)

14 24
= tan " (L, /L) (2.49)
24° 714 *
If L in (2.48) exceeds L , we set L =L and obtain an expression for u:
max max
tan u= (A, /A_ cos y) . sign (B _~B) (2.50)
62 Y4 [o]
In this formulation A , the costate for y, is evaluated as a root of
4
A % #BA +cC=0 (2.51~a)
Yy Yy
2 2 2 2
A=g (Lmax /W2 - cosTy)/V (2.51-b)
B = 2% cos vyg/V (2.51-c)
2 2
C (ABZLmax g/WV cos y)© - ¢ (2.51-d)
¢ = H,-A (L2 —wzcoszy)KV/qu + V sin v (2.51-e)
1 E1 max Xh3 oLme

It is demonstrated in Appendix B that (2.51-a) will always have real roots

of opposite sign; thus AY is chosen such that
4

sign {AY4} = - sign {Y3—Y} (2.52)
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Given this value for A_ , u is computed using (2.53) placing v in the
Ya_,
quadrant appropriate to sign {Y3-Y}-
It should be noted that the arbitrary separation of h and y dynamics

in the third and fourth boundary layers fails to account for the coupling

that naturally exists between these states. A method is given in Appendix

D for choosing k in (2.12) so that this problem is alleviated.
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SECTION 3

FEEDBACK IMPLEMENTATION

This section describes the feedback implementation of the control
solution formed from the singular perturbation outer and boundary layer
solutions described in Section 2. Five topics are covered: organization
of climb and descent legs, an alternate proportional vertical lift scheme,
thrust and 1ift control during descent, avoidance of singularities in
the control solution, and the overall organization of the actual feedback

implementation.
3.1 Climb and Descent Legs

Long range intercept trajectories, ignoring initial turning and
other transients, have three stages. The flrst stage is a climb to
cruise at the long range optimal cruise energy (E:). The second stage
is a cruise leg. The third stage can take one of two forms. If the
target altitude is below the altitude for long range cruise, it is a
descent leg. It is important to note that climb and descent in this
report refer to gain and loss of energy - not altitude. For example,
altitude decreases during a portion of the climb profile. If the
target altitude is above the long range cruise altitude, the terminal
stage is a zoom climb (constant energy altitude gain) maneuver.

Short range intercepts are defined as occurring when the intercept
range is less than the range required to fly a long range climb and descent.
In this case, the optimal trajectory would consist of climb and descent
that meet at an energy level less than E: at an altitude and velocity on
the zero-energy-rate boundary for T = Tmax’ or on the dynamic pressure or
Mach constraint boundary (see Fig. 1). Henceforth, these lower energy
points will be referred to as pseudo cruise points, Eo'

An important element in the control design is the decision logic
required for determining whether an intercept path is long or short range.
In the short range case, the logic must select a pseudo cruise energy
level such that the horizontal range for climb and descent matches the
predicted intercept range. In the long range case, E: is used and a
cruise leg is inserted to match the predicted range to intercept. Descent
is initiated when the horizontal range for descent from E° matches the

predicted range to intercept.
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As was mentioned in Section 2, the climb, cruise and descent solutions
are independent of intercept geometry and target parameters. The calcula-
tions are performed off-line, and the results stored in the form h (E E )
for climb and h (E) for descent, where E represents selected pseudo cruise
energy levels, For the long range case we have h (E E ) Several climb
altitude profiles for the F-8 aircraft are illustrated in Figure 6. The
descent profile is independent of the selected cruise energy because
satisfaction of (2.31) for hd results in values on the dynamic pressure
boundary.

The time, tc(E,Eo), and horizontal distance, rc(E,Eo), required to

climb from E to EO were determined by computing the integrals:

E
£ (E,E) = fE° (1/E)4E (3.1)
E, )
r (E,E) = fp~ (V,/E)dE (3.2)
where
v, =/(E—h1(E,E°))2g (3.3)

and E is the energy rate computed at h (E E ) Tabular data for h (E E ),
t (E E ) and T, (E, E ) is presented in Table 1 for E and several pseudo cruise
energies.
The expressions used in calculating altitude and range for descent
are slightly different from those used in calculating altitude and range

for climb, since in descent, flight path angle is too large to be ignored.

We have:
E . ]
ty(E) = /7, (1/E)dE (3.4)
E0
r (B) = /%, (t,/E)dE (3.5)
EO
where
fd = Vl cos v4 (3.6)
v, = /[E-hd(E)]Zg 3.7)
Yy = sin-l{(dhd/dE)E/Vl} (3.8)
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TABLE 1

F-8 CLIMB ALTITUDE, TIME AND RANGE
AS FUNCTIONS OF ENERGY

ASCENT VARIABLESy CRUISE ENERGY= 4696405 M

ENERGY (M) HM) TIME(SEC) RANGE (M)
279445 0.0 55.0058 10342.0
1383460 0.0 34 44565 788848
2487475 0.0 21.4960 5389.9
355190 30648 104930 272048
4696405 820.36 0.0 0e0
5800.20 0.0 .0 0e0
6904435 0.0 0«0 0.0
8008450 0.0 .0 8.0
9112465 0.0 0.0 0.0
10216480 0.0 0.0 0.0
1132095 0.0 0.0 0.0
12425.10 8.0 0.0 0.0
13529.25 0.0 0.0 0.0
14633439 0.0 0.0 0.0
15737455 0.0 0.0 0.0
16841470 0.0 0.0 00
17945.85 0.0 0«0 6.0
19049.99 0.0 0.0 0.0
ASCENT VARIABLESy CRUISE ENERGY= 6504.35 M
ENERGY (M) H{M) TIME(SEC) RANGE (M)
279445 0.0 768073 16350.4
1383.60 0.0 5642579 1389742
2487475 0.0 4342975 1139843
3591.90 30448 3242945 872%.2
4656405 822496 21.8001 60093
5860.20 161544 11.1350 3118.5
6904435 2477475 0.8 0.0
800850 0.0 0.0 0.0
9112.65 Ce0 G0 0«0
10216480 O0e0 0«0 0.0
11320495 00 6«0 00
1242%5.10 0.0 0.0 0.0
13529.25 0.0 0.0 0.0
14633439 060 Ce.0 0.0
15737455 0.0 0.0 040
16841470 0.0 0.0 0.0
17945485 Je0 0«0 0.0
19049.99 0.0 0.8 0.0
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TABLE 1 (CONTINUED)

ENERGY (M)

279445
1383.60
2487475
3591.90
4696.05
5800.20
690435
800850
9112.65

10216.80
11320095
12425.10
13529.25
14633.39
1573755
16841.70
17945.85
19049.95

ASCENT VARIABLES,

ENERGY (M)

27945
1383.60
248775
3591.90
469605
580020
6904435
8008450
9112465

10216480
11320495
12425.10
13525.25
14633439
15737455
16841.70
17945.85
1904539

ASCENT VARIABLESs CRUISE ENERGY=

HeM)

0.0
0.0
Oe0
30.48
822.96
1615.44
2407.92
313944
4065.64%
8.0
0.0
0.0
0«0
0.0
0.0
0.0
0.0
0e0

H{M)

0.0
0.0
0.0
30448
822496
1615.44
2407.92
213944
287096
4541 .52
€626.88
Ce0
0.0
0.0
0.0
0.0
0.0
0e0

CRUISE ENERGY=

9112.65 M
TIMECSEC) RANGE (M)
107.9332 25825.6
87.3839 233723
Taab234 208734
634204 18204.4
5249260 15484.5
42.2609 12593.7
311056 943743
177964 5471.5
0.0 0.0
0.0 0«0
0.0 0.0
0.0 00
0.0 0.0
0.0 0.0
0«0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
11320.95 M

TIME(SEC) RANGE (M)
194.4020 544745
172.8526 52021.2
160.8922 4952243
149.8892 46852.3
15943948 441334
12847297 41242.6
1175744 38086e2
10442652 3412065
" 84.9084 280704
515031 17163.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 Ce.0
0«0 0.0
a0 0eC
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TABLE 1 (CONTINUED)

ASCENT VARIABLESy CRUISE ENERGY= 13529.25 M

ENERGY (M) H{M) TIMECSEC) RANGE (M)
27945 0.0 23741549 675351
1383460 0.0 2166056 65085.9
2487.75 0.0 2036451 6258649
359190 3048 192.6421 59917.9
4696405 822.96 182.1478 €719840
580020 1615.44 171.4827 5430742
690435 2407 .92 160.3274 51150.8
8008.50 3230.88 1473731 473323
9112465 4358464 131.9121 4274149
10216.80 5486.40 11447642 37635.2
11320.95 €096400 92.6095 30741.9
1242¢%.10 7193.28 6244630 2115047
13529425 7034.38 0.0 0.0
14633439 0.0 0.0 0.0
15737455 0.0 G0 0«0
16841.70 0.0 0.0 0.0
17945.85 0.0 0.0 0.0
19049.99 0.0 0«0 0«0
ASCENT VARIABLESs CRUISE ENERGY= 15737.55 M
ENERGY (M) ‘H(M) TIMEC(SEC) RANGE (M)
279.45 .0 27549463 781772
1383.60 0.0 25543971 7572440
2487475 0.0 2424366 732251
3591.90 30.48 2314336 70556.0
4656405 822 .96 2209393 6783641
5800.20 1615444 210.2742 6494543
6904435 2407.92 199+1189 61789.0
8008.50 356616 187.1362 58435.7
9112.65 4663 .44 173.9817 54709.5
10216.80 €791.20 159.2435 50510.3
1132095 €888e48 142.5676 4571545
12425.10 7985476 123.3140 401474
1352%.25 €717.28 99.3018 32953 ¢4
14633.39 9784.08 683067 2347248
1573755 8370448 0.0 0.0
16841.70 0.0 8.0 00
17945.85 0.0 0.0 0.0
19049.99 0.0 0.0 0.0
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TABLE 1 (CONCLUDED)

ENERGY(M)

279.45
1383.60
248775

3591090
465605
5800420
690435
8008450
9112465

1021¢€480

11320495

12425.10

13529.25

1463339

15737.55

16841.70

17945.85

19049.99

ASCENT VARIABLESs CRUISE ENERGY=

H{M)

0«0

00

0.0
3048
822 .96
1615.44
2407.92
2596+64
4846032
€974.,08
7071636
£168.64
5265492
10027.92
13125.20
10271.76
10668.00
1063609

.0

19049.99 M
TIME(SEC) RANGE(M)
62845549 210690.6
608.0056 2082374
595.0452 2057385
584.0422 20306Se4
S73.5481 200349.5
562.8831 19745847
551.7278 19430244
539.8125 190987.3
527.1221 187502.6
513.2688 18356629
49745857 17927241
479.4856 17416049
45842539 16812247
431.6506 16031€a.6
397.0964% 149984.7
3439612 1324777
244.0769 956835

00
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where E is the energy at initiation of descent. Tabular values for hd(E),
td(E) and rd(E) are provided in Table 2. Climb times and ranges from

the current energy to the cruise energy are obtained by interpolating

and differencing the values in Table 1. A similar procedure is used

for descent using Table 2. For example,

td(Ec,Ef) = td(Ef) - td(Ec) (3.9)
rd(Ec,Ef) = rd(Ef) - rd(Ec) (3.10)

In general, E_ is not known a priori and must be determined such that

f
h(tf) = hT(tf). A terminal constraint must be satisifed:

hd(Ef) = hT + VT sin Yo tgo (3.11)

where tgo is the estimated time remaining until intercept. Referring to

Figure 1, we initiate descent when

rd(Eo,Ef) cos (Bo-l) > R+ (VT cos Yo sin l)td(Eo,Ef) (3.12)

is satisfied, where R is the current horizontal range.
3.2 Proportional Vertical Lift

An option was included in the control logic for stopping the
singular perturbation solution after the second boundary layer, and using
a suboptimal proportional control for vertical 1lift. We first define a

desired flight path angle

= (h,~h) /T, V +{g(dh1/c1E)/v s V= ,/_—(E_hl>zg (3.13)

The second term in (3.13) is an approximation to the flight path angle for

YD

following the first boundary layer climb path. The proportional vertical
lift (Llp) is computed based on a desired flight path angle rate proportiomnal

to (vy=v):

?D = (p=n)/%, = (Llp-WCOSY)/mV (3.14)
Solving for L1p we have

Llp = mV(YD-Y)/r2 + Weosy (3.15)
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TABLE 2

F-8 DESCENT ALTITUDE, TIME AND RANGE

AS FUNCTIONS OF ENERGY

DESCENT VARIABLESe CRUISE ENERGY=

ENERGY (M)

3586493
449%.47
5412400
6324454
7237.08
8149.62
9062416
9974.69
10887423
11799477
1271230
13624485
14527.38
15449.92
16362446
17275.00
18187.54
19100.07

H{M)

0.0

67740
1331.60
1976+64
c604.15
3212.69
28l44486
4390.52
4957 .39
£5806.55
€030.09
6553.26
7055407
7531.21
8006449
E463437
£896.07
8317.89

0.0

19100407 M
TIMECSEC) RANGE (M)
357.6738 10730644
27048616 8391849
198.3982 63759.6
143.5021 47992.5
108.2608 375541
87.5223 3123140
74,0457 2701542
63.7786 2371943
55.3226 20935.3
4841671 185200
41,5890 16232.8
35.1294 13919.1
28.8112 11585.8
22.6819 9252.1
16.7482 692949
10.9957 461445
5.4142 2303.1

0.0
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The controls L and u are then computed as

i3

L= /Llp + L22 (3.16)

-1
U = tan (Lzz/Llp) (3.17)
A block diagram of these calculations is given in Figure 7. The charac-

teristic equation for the resulting transfer function is

2 -
tlrzs + T, S +1=20 (3.18)

The undamped natural frequency (wn) and the damping ratio (z) for this

second order system are

w, = YT, (3.19)
¢ = T, (3.20)

The values chosen for the above were w = 0.1 rad/s and ¢ = 0.8, respec~-
tively. This resulted in values for Ty and T, of 15.0 and 6.0 s respec-

tively.

3.3 Thrust and Lift Control During Descent

In the ideal case of a fully optimal control solution, there would
be insignificant maneuvering and throttle variation during descent. There
is, however, significant turning in the zero order solution implemented.
This is primarily due to two factors, First, since the aircraft follows
the dynamic pressure constraint boundary during most of the descent, and
since the flight-path angle is non-zero, the intercept heading changes
from the optimal cruise heading value. Because of this, it is necessary
to wupdate the intercept heading during descent using (2.24) and the hori-
zontal component of aircraft velocity. Second, target maneuvers that
occur after the initiation of descent necessitate heading changes. The
former problem could be greatly reduced by correcting the outer solution
to first order in E, in a manner similar to the procedure followed in [16].
In order to insure intercept under all conditions, it is necessary
to modulate both thrust andL22during descent. In the case ofL22
maximum 1ift should always be used during descent in maintaining the
intercept heading, due to the fact that AE in (2.32) becomes positive

. L1 .
during descent. In practice, a proportional control law is used
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for small heading errors.

Thrust modulations are used to control rate of descent to ensure that

h-hT at intercept. Two correction terms are introduced:
T = Td + GTl + GTZ (3.21)
where T, 1s the nominal descent thrust from (2.28, 2.29). The second

d
term corrects for the fact that L does not equal W during descent, since

this is assumed in generating the td and Ty tabular data. Thus, 6T1 com=-

pensates for the increased drag due to lift wvariatioms.
o1, = K(L2-W)/qs (3.22)

The second component compensates for the current mismatch (§R)in range,

where from (3.12), replacing Eo by E
SR = R + (VT cos Yp sinl)td(E ,Ef)—rd(E,Efkos(Bo—A) (3.23)

A proportional control law was derived, defining

SR = -K; 6R (3.24)

Noting that

SR

(dr (E,E;) /dE) cos (8 _-1) 6E (3.25)

and

SE

GTZV/W (3.26)

one can solve for 6T2 as

8T, = KBWGR/Vcos(BO-A)(drd(E,EfydE) (3.27)

2

In order to allow for thrust variation, Tmin was set equal to Tmil/Z’

where Tmil is the military thrust level.

It should be noted that a portion of the descent path calls for
Td = Tmax' Referring to Figure 8, note that upon initiating descent,
for Eo > Es, the commanded altitude on the descent path is such that
vl(Eo) > VO(EO). As shown in Appendix A, this means that AE remains

. . . . . 1
negative until Vl(E) < VO(EO), which from (2.28) implies that T = Tmax'
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3.4 Summary of Control Calculations

A summary of the control calculations including proportional vertical
1lift is presented in Figure 9. The organization of the additional calcu-
lations for the full zero-order solution is given by Figure 10. All
on-line calculations are referenced by equation numbers. The purpose of
the range matching block is to establish the proper cruise or pseudo cruise
energy level, Eo. During climb, the costates are calculated on-line and
hc(E’Eo) is taken from tabular data. All turn parameters are calculated
on-line. During descent, hd(E,Ef) is drawn from tabular data, and thrust

and 1ift are calculated as described in Section 3.3.
3.5 Avoidance of Numerical Singularities

Numerical difficulties evidenced by discontinuities in the control
solution were encountered when the aircraft altitude, heading and/or
flight path angle approached their optimal values for the second and
third boundary layer solutions. These discontinuities occurred when
certain functions approached an indeterminate (zero over zero) form as
the optimum state values were approached. For example, the argument
being minimized in (2.36) approaches an indeterminate form as heading
error approaches zero. The corrective measures took the form of first-order
Taylor series expansions and approximations taking advantage of the
asymptotic character or the boundary layer solutions. A more detailed

description is given in Appendix F.
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Figure 9.

Summary of control calculations with

proportional vertical lift.
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SECTION 4

POINT-MASS MODEL OF THE F-8 AIRCRAFT

This section describes the procedure by which the F-8 was modelled
at trim conditions and presents the results of that effort. The inter-
cept control law has been built on the assumption that the aircraft

behaves as a point mass. The aerodynamic model takes the form:

D=gs C, + (n/c_ ) L2/qs =4qs C, (4.1)
o La

L = gs CL (a—ao) (4.2)
o
Thus, implementation of this model for the F-8 required that values of

c C and n be available at trim. These values were generated from

’
tﬁg F—goaerodynamic data in [24] in the manner described below.

First, by linear interpolation of moment data about the pitching axis,
elevator deflections corresponding to trim (Ge ) over a range of angle-of-
attack (a) were determined at selected Mach nugbers. Next, CL was
graphically estimated by determining the slope of a straight 1¥ne passed

through points corresponding to C. as a function of a, again at selected

Mach numbers. Since o is small t;;ough most of a long range intercept
trajectory, the approximation was biased to give greater accuracy to

small a. This procedure also resulted in a non-zero "angle-of-attack at
zero lift" (ao). Values of CL and a, as functions of Mach number are

shown in Table 3. The graphicgl CL estimates are displayed in Figures 11
through 17, The original drag coef¥ieient data is tabularized as a function
of elevator deflection, angle of attack and Mach number. The parameter

C,, was calculated by interpolating the drag coefficient data at trim

D
cogditions (SeT, ao) for various Mach numbers. Values obtained for C

are shown as a function of Mach in Table 3. Finally, n was calculatego
based on the parabolic drag model in (4.1). Values of (CD-CD ) were
plotted against (a—ao) on log-log paper and a 'best fit" line®with a slope
of 2.0 was passed through the points, again favoring lower values of a.
Then, from values of (CD—CD ) and (a—ao) at a point on the line, n was

calculated by using (4.2) in (4.1) to eliminate L and solving for n:

2
n= (C-C.)/C; (a=a)) (4.3)
D D, La o
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The plots used in the estimation of n are displayed in Figures 18 to 24.

and the resulting values of n are given in Table 3.

TABLE 3
SUMMARY OF F-8 TRIM AERO DATA

MACH ag (rad) CLqa Cpe n
.18 .0192 3.366 .0149 . 446
.6 .0105 3.518 .0142 .580
.85 .0140 4.09 .0152 .734
.9 .0143 4.29 .0166 . 807
.98 .0105 4.18 .0291 .748

1.1 .0105 4.24 .040 .733

1.2 .0105 3.58 .039 .722
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Section 5
NUMERICAL RESULTS

This section documents the numerical tests conducted to verify the
analytical results described in Section 2, and to test the control design
described in Section 3. The alrcraft simulated in this study was the F-8C,
modelled as described in Section 4. The computer used in generating num-
erical data was the IBM 370/168. This machine has a 32 bit word size, a
basic machine cycle time of 8 ns, and performs 3 X lO6 floating point
operations per second. Main storage access time averages 480 ns. Com-
putation of the full zero-order solution required 0.07 seconds per update
and 50198 bytes of core space. Control computation with proportional
vertical 1lift substituted for the third and fourth boundary layer solutions
required 0.03 seconds per update and 43724 bytes of core space. The dif-
ference in time and space requirements is primarily due to the numerical
search (2.43) in the third boundary layer.

Five test cases were utilized for demonstration and evaluation of
the control logic corresponding to a full zero-order solution. The initial
conditions, intercept time and final range are summarized in Table 4.

Cases 1 through 3 share the same sort of initial geometry, though with
varying initial ranges to the target. In each case, the target flies at a
fixed altitude, heading and velocity. These cases were chosen to display
the effect of the range matching calculation, and hence involve very
little maneuvering. In all three cases, the initial heading error is small
and the aircraft is at the first boundary layer optimal altitude for its
initial energy. Figure 25 illustrates the resulting ground tracks., All
three cases display a slight degree of turmming throughout the climb and
descent portions of their trajectories. This is due to the fact that the

outer solution optimal heading calculation (2.24) is based on the assumption
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TABLE 4

SUMMARY OF INITIAL AND FINAL CONDITIONS
FOR TEST CASES

Case x(m) vy(m) h(m) B(rad) V(m/s)

1 0. 0. 3048. 0. 295.92
2 0. 0. 3048. 0. 295.92
3 0. 0. 3048. 0. 295.92
4 0. 0. 3048. 0. 295.92
5 0. 0. 9144. 0. 212.31
Case xT(m) YT(m) hT(m) BT(rad),,_ngm{sz

1 140208. -80772. 3048. 1.0472 232,56

2 93023. -53209. 3048. 1.0472 232.56
3 46698, -27000. 3048. 1.0472 232.56
4 0. 1335.7 3048. 3.1416 274.32
] 0. 1335.7 6096, 3.1416 274,32

Case  t.(s) r(ty) (m)

1 618.05 34,901
2 434,72  34.008
3 239.98  34.287
4 120.09 17.247

5 150.69  126.25
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that the aircraft flies at its cruise velocity throughout its trajectory,
ignoring the fact that lower velocities are encountered during climb and
descent. During climb, this variation in heading is insignificant; however,
it is more noticeable during descent., This is due to the more rapidly
changing line-of-sight angle (A in Fig. 1) encountered as the target moves
across the aircraft's path at relatively close range.

Figure 26 displays histories of actual and reference altitudes (hl)
for Cases 1 through 3. Case 1 is a full long range intercept; the aircraft
climbs to (E:, h:) before descending to the target. Cases 2 and 3 are
short range intercepts in that the trajectories never achieve the optimal
cruise energy; instead, they reach lower pseudo cruise energies prior to
descent initiation. Note that both short range intercepts contain apparent
cruise legs. This is because the choice of pseudo cruise energy levels was
restricted to a set of discrete values. If a continuum of pseudo cruise
energies was allowed, the short range trajectories would consist of
a climb to cruise immediately followed by a descent to the target. It
can also be seen that the aircraft altitude tends to lag behind the refer-
ence altitude during climb in all three cases. This is because the control
solution is based on a zero order singular perturbation analysis, which
results in a type zero control law. Hence, a nearly constant error results
when following the ramp-like altitude reference during climb. Inclusion of
first-order correction terms in the control solution would be necessary to
eliminate these errors. It is interesting to note the discontinuity at
t = 29s in the reference altitude for Case 3. This occurred because the
aircraft was lagging the reference altitude during climb, thus travelling
faster than it should have at all energy levels, and closing range with
the target at a faster pace than appropriate for the climb path. Finally,

the range to the target became sufficiently shortened that it became
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necessary to range match to a lower pseudo cruise energy level. A dis-
continuity in reference altitude can also be observed at the beginning
of descent for all three cases. This can be attributed to the energy
state model of the aircraft and the fact that, while the aircraft's
optimal cruise point is defined by (2.20), the descent path is defined,
via (2.31), as the altitude and energy corresponding to the Upax boundary.
In the F-8 aircraft, these points do not coincide at the pseudo cruise
energies encountered in Cases 1 through 3.

Figure 27 displays aircraft altitude as a function of velocity for
Case 2., It can be seen that the energy gain during climb occurred at
almost constant velocity. Figure 28 displays actual and reference
flight path angle (y3) histories for Case 2. Figure 29 shows 1lift and
bank angle profiles for the same case. The beginning of descent is
clearly marked in Figure 28 by a sudden decrease in the reference flight
path angle. The resulting control profiles call for near maximum 1ift
and inverted flight to rotate the flight path angle. This amounts to a
zoom dive to the descent path. TFigure 30 displays the thrust history for
Case 2, During descent, ripples can be seen in both 1lift and thrust.
These arise from the proportional vertical 1ift calculation used during
the descent leg., The reference flight path angle, Yp from (3.13), is
dependent on the term E(dhlldE)/V. The derivative is calculated by a
first order difference expression directly from the tabular descent data
listed in Table 2. The ripples in Yp» and hence in 1lift (3.15), occur
when the aircraft altitude passes across intervals between the discrete
points comprising the descent data. These ripples affect the thrust

through 8T, in (3.21) and (3.22). The average variation is a consequence

1

of the range matching taking place during descent. The accuracy of this
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approach 1s demonstrated by the small values for r(tf) in Table 4.

Figure 31 displays the ground track for Case 4. In this case,
the aircraft is initially at the first boundary layer optimal altitude
for its initial energy, offset laterally from the target by a distance
corresponding to the diameter of a turn for the aircraft at the highest
sustainable turn rate for the initial conditions. The target moves at
a constant altitude and velocity at a heading opposite from the controlled
aircraft's initial heading. This case illustrates a combined initial
turn and climb behavior, followed by a descent under near tail chase
conditions. Figure 32 gives the actual and reference altitude histories
for this case. ©Note that during the initial hard turn, the aircraft
performs a '"high speed yo~yo" maneuver, moving up in altitude (above the
climb path) to trade speed for enhanced turning performance. During this
phase, the reference altitude from the second boundary layer (h2) deviates
markedly from the first boundary layer optimal altitude (hi)’ due to the
initial heading error. Within thirty seconds, however, the heading error
has been brought down to a small value, resulting in the reference altitude
asymptotically approaching the altitude called for from the first boundary
layer solution. Note that the sudden change in reference altitude around
t =10 s is consistent with the behavior of the second boundary layer
solution as displayed in Figure 4, where a sudden jump to the corner velo-
city altitude takes place for large heading errors at low to midrange energy
levels. Figure 33 shows the altitude versus velocity profile for Case 4.
Figures 34 and 35 display the reference and actual flight path angle
profiles, and the 1lift and bank angle profiles for this case.

Figure 36 is the ground track for Case 5. This case involved both a
large initial heading error and a 6096 m offset from the climb path.

This case was selected to demonstrate high altitude turning behavior, and
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the balance in allocation of resources for reduction of heading and altitude
errors. The horizontal plane geometry for &
Case 4, with the target moving in the same manner, though at a higher alti-
tude. Again, the aircraft is initially separated from the target by a
distance corresponding to the diameter of a turn made at the highest sus-
tainable turn rate for the aircraft's initial conditions. Figure 37 gives
the actual and reference altitude histories for this case. It can be seen
that initially more emphasis is given to reducing heading error. In Figure
38, altitude is shown as a function of wvelocity. Figures 39 and 40 are
the reference and actual flight path angle histories, and the lift and bamnk
angle profiles.

Comparing the 1lift histories for cases 4 and 5, one notes that in Case
4 the low altitude turning behavior is characterized by a liberal use of
maximum 1ift (Fig. 35), which indicates that zeroing of heading error, under
the circumstances 1s of greater importance than gaining energy. On the
other hand, for Case 5, lower values of 1lift are called for (Fig. 40). This
is in agreement with Figure 3, which shows that the control solution for

the second boundary layer tends to inhibit the use of 1ift at higher energies.
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SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

It has been demonstrated that singular perturbation methods are an
effective tool for developing computer algorithms for on~line optimal air-
craft controls. The computation time and storage requirements appear to be
within the capabilities of present day flight computers. This evaluation
is based on a minimum time intercept problem. Extensions to other performaﬁce

indices and other forms of terminal constraints should be possible.

An essential aspect in obtaining implementable solutions is the ability
to order the individual state variables on separate time scales. This re—
quires considerable insight to the dynamics of optimal flight so that a
suitable ordering can be made at the outset. The ordering selected here
should be applicable to a variety of problem formulations. In general, not
all state variables will have separable dynamics. However, this study has
illustrated two techniques for overcoming this difficulty. For short range
intercept problems, the position and energy dynamics are coupled, and the
problem was corrected by constraining the cruise energy level. In general,
altitude and flight path angle dynamics are highly coupled for all intercept
conditions. 1In this case, penalizing flight path angle variations is effective

in accounting for this coupling.

A second aspect that may be a stumbling block in singular perturbation
analysis (at least from the perspective of real time control) is the need to
define the terminal boundary layer initiation times. The number of these
layers is dependent on the number of boundary layer state variables that are
constrained at the terminal time. This definition requires a boundary layer
integration, which in the case of minimum time intercept can be performed
off-1ine. 1In other formulations, boundary layer integration can have a large
impact on the requirements for real time implementation. When they cannot
be done off-line, then an attempt should be made to expand the necessary
conditions to second order and obtain an analytic expression for the inte-
gral.

Based on the results of this study, we offer the following recommenda-

tions:
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Flight Testing - As mentioned in Section 1, the control algorithm

has been tested at the NASA Langley real time simulation facility.
Hence, a logical next step would be an actual flight test. Such an
effort would require very little in terms of modifications to the
control algorithm, and could make use of the E—S fly-by-wire test
bed at the NASA Dryden facility. It should be noted that, as a
result of the piloted simulation effort at Langley, many of the
issues relating to interfacing with displays have been addressed.

Effect of Wind - To date, the effect of wind on the performance of

the control solution has neither been evaluated nor compensated for.
Obviously, this topic would have to be addressed before a practical

implementation of the controller could take place.

Higher Order Solutions - The control law is currently a zero-order

approximation to the optimal comtrol. In climb, this results in a
significant lag in following the desired climb profile. This can be
corrected by introducing first-order correction terms into the first
boundary layer solution. Similarly, errors in the outer solution
optimal heading, arising from the rapidly changing velocity and non-
zero flight path angles in the descent boundary layer, would be
reduced by correcting the cruise heading to first-order to account
for these effects. These corrections would primarily affect the

off-line computatioms.

Other Performance Indices ~ Performance indices other than minimum

time need to be investigated. For example, a logical extension is
to consider a weighted combination of time and fuel consumption.
This would encompass most mission objectives. It should be noted in
this context that the strict minimum time case is highly specialized
in that the outer and first boundary solutions for h and V are inde-~

pendent of geometry and target velocity.

Bank Angle Computation - In situations where the lift magnitude is

small, large fluctuations result from small variatioms in the bank
angle command in the horizontal and vertical lift compomnents. 1In

the context of a practical implementation, this amounts to an excess-
ive pilot effort in return for a minor trajectory correction. Hence,
development of a suboptimal strategy to correct this shortcoming is
called for.
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APPENDIX A

OPTIMIZATION OF POSITION, ENERGY AND HEADING DYNAMICS

This appendix provides a detailed derivation of the zero-order
control solutions optimizing position, energy and heading dynamics.

The state equations, for the coordinate frame shown in Figure 1, are

x =V cos Y cos B (A.1)
vy =V cos vy cos B ~ VT cos Yq (A.2)
€E = (T-D)V/W (A.3)
52é= L sin u/mV cos vy (A.4)
esﬁ- V sin ¥ (A.5)
84§ = (L cos u - Wecosy)/mV (A.6)

The following conditions must be satisfied for optimality:

A, = -eH/ax , iy = -3H/3y (A.7)
eiE = -3H/3E (A.8)
szis- -3H/3B (A.9)
e>i = -3H/2h (A.10)
s4iY- -3H/ 3y (A.11)
L, ¥, T = arg min H(x, A, w (A.12)
L,u,T
H = A" + 1 + ksin®y + constraints (A.13)

where the minimization in (A.12) is subject to the comstraints (2.13-2.16).
The Hamiltonian in (A.13) is defined for the performance index in (2.12).

A.,1 Outer Solution

Taking the limit in (A.1 - A.1ll) as ¢»0 we have the following zero-order

necessary conditions for the outer solution:

To = Do’ B, = 0, Yo = 0, Lo a W (A.14)
BHO/BE = BHO/Bh = 3H°/3B = 0 (A.15)
Hb = xx Veosg + Ay (Vsing -~ VT cos YT) + 1 + constraints = 0 (A.16)

o o
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where Do is drag for Lo = W and is defined in (2.22). Note from (A.1l5)

- that E, h and B take the role of control variables as we let e+0 and
(A.8 ~ A.11). This implies that E, h and B minimize Ho. At the same
time, the original controls now become constraints in (A.14). The optimal

heading Bo is derived as follows. From (A.15) we have

BHO/BB = —Ax VsinB + Ay VcosR = 0 (A.17)
(o] o]
or that
tanB_ = xy /xx (A.18)
o o

implying, from (A.7), that the optimal heading is constant. Referring to
Figure 1, the geometrical requirement for intercept in the horizontal

plane is

Vsin(B-1) = V_ cos Yp cos A (A.19)

T
where A is the line—-of-sight angle.

The optimal cruise point (ho’Eo) is derived in the following manner.

We use (A.18) to eliminate Ay from (A.16) resulting in

H = Ax V/cosg - Ax V,.cos Yptan B + 1 + constraints = 0 (A.20)

(o} T
(o) o
This gives
Axo/coss = —1/(V—VTcosYTsinB) <0 (A.21)

From the intercept condition (A.19), it can be seen that the denominator
of (A.21) must be positive. Applying this condition to (A.20) and minimizing
Ho gives:

ho’ Eo = arg :ag(V-VT cos Yp sinf) (A.22)
]

Despite the seeming dependency of the solution of (A.22) on VT’ Yo
and B, it can be shown that ho and Eo are independent of target parameters
and intercept geometry. Denoting the quantity being maximized in (A.22) as
n, we will show that 3n/3V > 0 for all values of V. It follows that (A.22)
reduces to finding h and E that maximizes V subject to the constraints (A.14)
and also (2.13-2.16). Examining the variation of (A.22) and the intercept

condition (A.19) we have
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Sn = GV-VTcoschosBO 68 (A.23)

and

6Vsin(8°-k) + Vo cos (BO-A)GB =0 (A.24)

respectively. Eliminating 88 in (A.23) and (A.24) we have
snf6V = 1 + VTCOSYT cosg tan(Bo_-)\)/Vo (A.25)

Making use of (A.19) to eliminate V, in (A.25), we obtain
8n/sV = 1 + cosBosinz(Bo-A)/cos (Bo-l)cos A (A.26)

For intercept to occur, (30-}\) must lie in the interval (-v/2, w/2), implying
that cos (BO—A) > 0. Further, from Figure 1, cosBO/cos}\ > 0. Note also
that if A = 8 _ = +m/2, then the second term in (A.26) is zero.

After determining ho’ Eo that maximize V subject to the constraint
T°=Do, Bo is computed from (A.19) for the maximum cruise velocity, V=V°;

then the position costate can be determined from (A.18) and (A.21):

}\xo = —cosBO/(V—VT cos Yo sin Bo) (A.27)
Ayo = -sinBo/(V-VT cos yq sin 80) (A.28)
Note that (A.18) should not be used directly in calculating >‘y given )\x s

. . o
due to the indeterminate formthat results at Bo = i*rr/Z. °

A.2 First Boundary Layer Solution

Using the time transformation T = t/e and letting e-+0, the necessary

conditions for the first boundary layer become:

Hy = 0, Y, = 0, Ll =W (A.29)
8H1/3h = 3H1/BB = BHl/BT = 0 (A.30)
Hl = )‘x VcosB + >‘y (VsinB-VTcosYT)
o o
+ AE (T-DO)V/W + 1 + constraints = 0 (A.31)
1
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Although (A.30) and (A.31) represent four nonlinear equations in four
unknowns, their solution is quite straightforward.

The first boundary layer optimal heading comes from (A.30):

8H1/BB = —Ax VsinB + Ay VeosB = 0 (A.32)
o o
giving
-1
Bl = tan (Ayo/xxo) Bo (A.33)

Because T appears linearly in (A.31), we have

I

Tmax(h’v) for AEl <0 (A.34)

(=]
"

Tmin(h,V) for lEl >0 (A.35)

The minimization with respect to h is obtained by recognizing, as

described in Appendix E, that 3H1/3h = 0 and H1 = 0 is equivalent to

h1 = arg min - (Tmax-Do)V/W (A.36)
h H_(E,h) : -
current

for A < 0, and

Ey
h, = arg min (Thin=Do) V/V¥ (A.37)
h H_(E,h) E =&
current

for AE > 0. The term HO(E,h) is the outer solution Hamiltonian evaluated
1

at the current values of E and h. The expressions (A.36) and (A.37) roughly

correspond to climb and descent, respectively. The first boundary layer

costate is obtained from (A.31):

AE = —WHO(E,h)/V(T-Do) (A.38)
h = hl

1
T = Tl

As was the case with the outer solution, it is possible to obtain hl
in a form independent of target parameters. Use of the condition Hb(ho,Eo)=0
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N

e

provides

1- Ayo VT cos Yp = -Axo VolcosBo (A.39)

Substituting (A.39) in (A.36) and (A.37), using the inequality in (A.21),

and then eliminating multiplicative constant terms results in:

h1 = arg min (qmax_Do)v (A.40)
h V-V
o -E
current
for XA, < 0, and for A, > 0:
Ey Ey
—(Tmin‘“Do)V
hl = arg min ‘ (A.41)
V-V
h o
E = E
current

It should be noted that hl(Eo), where Eo is a cruise or pseudo cruilse
energy level, will generally differ between climb and descent; hence the
aircraft must execute a constant energy transition arc from cruise to
descent altitude, as discussed in Section 3. Also of interest here is
the fact that T1 may not switch from T to T_. immediately upon the

max min
initiation of descent. This can be seen by substituting (A.39) in (A.38),

giving
AEl = -y AxO(V—VO)/V (T—Do)cos Bo (A.42)
h=nh
1
During climb Tl > D° and AEl < 0; thus, Tl = Tmax during climb. After the
initiation of descent, for large values of Eo, Tmax < Do and initially,
v > Vo, so we still have that AE < 0. Because of this, the optimality con-
dition is Tl = Tmax in descent u%til V< Vo, as illustrated in Figure 8.

For V < Vo’ the optimality condition is T1 = Tmin' Note from Figure 8 that
if E° < Es’ then V < Vo initially on the descent path, and thrust should

immediately switch to T . .
min
A.3 Second Boundary Layer Solution

The heading dynamics are accounted for by introducing the time trans-

formation T = t/e2 and once again letting ¢+0. The necessary conditions for
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optimality are

2 2
v, =0, L =W2+L22 (A.43)

8H2/3h = BHZ/BT2 = 3H2/8L 0 | (A.44)

22 ©

_ 2
H, = Hl(E,h,B) + A B VK L22/qu +

1
constraints = 0 (A.45)

L22/mV - A

where L22 is the second boundary layer horizontal 1lift and Hl(E,h,B) is
the first boundary layer Hamiltonian evaluated at second boundary layer
conditions. Equations (A.44) and (A.45) give four nonlinear equations in
four unknowns.

If we assume that all turning takes place near the initial time we

have that AE < 0 so that the optimal thrust during turning is

1
T2 = Tmax (hZ’VZ) (A.46)
where h2 is the second boundary layer optimal h and V2 is
V2 = V(E-h2)2g (A.47)
E= Ecurrent

Solving for the optimal horizontal 1ift, using (A.44) and (A.45), we obtain

3H2/3L22 = —ZAEl KL22 V/qsW + ABZ/mV =0 (A.48)
Using (A.48) to eliminate AB in (A.45) results in
2
Ly, = /—qswl(E,h,rs)/VKAEl -sign (B _-8) (A.49)

We also note from (A.48) that

51gn(L22) = 51gn(A82) (A.50)
Substitution of these results in (A.45) and use of the minimization proce-
dure detailed in Appendix E results in the following solution for h2:

h, = arg min {-p/Hl(E,h,B)KV}

2
h 8 BCurrent (A.51)
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subject to the constraints (A.44) and (2.13-2.16). Having computed the

second boundary layer controls, the costate XB is determined:
2

A, =2H_ (E,h,B)mV/L
By, 1 22 heh,) (A.52)
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APPENDIX B

OPTIMIZATION OF ALTITUDE AND FLIGHT PATH ANGLE DYNAMICS

This appendix provides a detailed derivation of the zero-order control
solutions optimizing altitude and flight path angle dynamics. The state
equations and necessary conditions have already been summarized (A.1-A.13).
B.1 Third Boumndary Layer Solution

The third boundary layer problem arises from applying the time trans-
formation T = t/e3 to (A.1-A.12) and letting ¢+0. Here, the zero-order

necessary conditions for optimality are:

Ll3 = W cos v (B.1)
8H3/3Y = 3H3/8L2 =0 (B.2)
Hy = Hl(h,E,B,Y) - ;\El LZZ KV/qsW + ABZ ng/wv cos Yy

xh3 Vsiny + vl(yiax-yz) + v2(Liax-W2coszy—L§) =0 (B.3)

where Hl(h,E,B,Y) is the first boundary layer Hamiltonian evaluated at

current values of h,E,f and y; that is

Hl(h,E,B,Y) =(Ax cosf + Ay sinB)Vecosy - AYOVTcos Yo

o o
+ A, (T-D)H)V/W+ 1+ ksinzy (B.4)
E1 o
where
2 2
D, = qsCy + KW cos v/qs (B.5)

(o]

The parameters A_ , A, A, , and A are known from the outer, and first
X Yo B )

and second boundary layer solutions. Satisfaction of (B.2) for L2 yields:
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3H3/3L2 = -szl

L2 KV/qsW + A, g/WVcosy - 2v,L, = 0 (B.6)
2 82 272
Note that v=0 off the 1lift constraint, in which case the horizontal 1lift
solution is given by
2
L23 Aszqsg/ZAEl KV©cos Y3 (B.7)

2 L z _ W2 coszy and v can be determined

On the constraint boundary, L23 =L o.x

as a function of y. 1In either case, L23 and y can be determined as functions
of y and other known parameters. Hence, we need only combine (B.7) with

the first of (B.2) and (B.3) to compute optimal Y, and its corresponding
costate kh3. To do this, we follow the procedure described in Appendix E,
writing

Y3

where H2 is the second boundary layer Hamiltonian

= arg max {siny/Hz(h,E,B,Y)}'sign (hz—h) (B.8)

2
H2 = Hl-AEl L23 KV/qsW + ABZ L23 g/WVcosy (8.9)
For L23 in (B.9), (B.7) is evaluated at the search value of vy in (B.8).
The maximization in (B.8) is performed over the range 0 £ vy < Ymax® where

we have used the fact that sign(lh ) = =sign(y) = sign(h—hz) where h2 is
3
the optimum altitude from the second boundary layer, Having determined Yj

and L,,, A can be computed using (B.2):
23 h3

) - A L2 KV/qsW + A

3 E, 723

A = -{H, (h,E,B,Y
3 1V Ee P 1 82

h L23g/WVcosY3}/VsinY3 (B.10)

B.2 Fourth Boundary Layer Solution
For solutions off the 1lift constraint bound we write the fourth boundary

layer Hamiltonian as

2 2
H, = H3(h,E,B,Y) - A K(ZGL14 Wcosy + 6Ll4) + 2(6L24L23 + L24)V/qsw

4 E1

+ ABZ 8Ly, g/WVcosy + AY3 6L14g/wv =0 (B.11)
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where 6L14 and GLZ4 are perturbations in the controls from the third
boundary layer solutions:

§L.,, = L., - Wcosy (B.12)

14 14

§L,, = L (B.13)

24 = Loy - L

23

Using the conditions H, = 0, 8H4/36Ll4 = 0 and 8H4/36L24 = 0 we obtain the

following solutions

6L24 = Aszgqs/ZAEl KVZcosy - L23 (B.14)
SL = [-H,(h,E,B,Y)qs W/X KV—tSL2 11/2 *sign(y,-y) (B.15)
14 3”’q E]_ 24 gn'Y3Y .
The final 1ift and bank angle equations are:
_ 2 2,1/2
L = {(Wcosy + 6L14) + (L23 + 6L24) } (B.16)
y = tan YL, /L, ,) (B.17)
24714 .
If L in (B.16) exceeds L we set L = L and reformulate the necessary
max max
conditions in order to determine the optimum bank angle.
L14 = Lmax cos U (B.18)
L24 = Lmax sin u (B.19)
we obtain, via 3H4/3u = 0O:
tany = X, /A cos ¥ (B.20)
By’ Yy

The procedure for and considerations involved in determining AY are
4
detailed in Sectiom B.3.

It can readily be shown that the fourth boundary layer solution asymptoti-

cally approaches that of the third. From (B.7) and (B.l4), we have

SL,, = A qsg(l/zxE

24 8, szcosy - 1/2AE1KV2 cos y3) (B.21)

1
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Since (B.21) is continuous it will asymptotically approach zero as YY5e
Examining the form of (B.15), it can be seen that <5L14 also go to zero as
Y>3, since H3(h,E,B,y) goes to zero, as does 6L24.
B.3 Calculation of the Fourth Boundary Layer Costate

The costate AYQ is determined by a quadratic equation obtained by
substituting (B.20) in (B.1l1l):

2

AX Y4 + BKY4 +C =20 (B.22)
where
A= gz(LmaXZ/WZ—coszY)/V2 (B.23)
B = 29g cos Y/V (B.24)
C= (A, L___ g/Viicosy)>-d> (8.25)
Bz max :
® = H (B,E,B8,v, L=L ) + X, Vsiny (B.26)
3

where H1 has been defined in (B.4).

The roots of (B.22) are as follows:
, = (-B + vB2-4AC) /2A (8.27)
4
where the term under the radical is

2_,,c - 2_ _ 2,22
8440 = A1(0L, 8/ VWD - (0L BITW) = (g Ly /)

+ (g @ g/W)P/cos)? ) (8.28)

By

Because we require real-valued roots for (B.22) the term (B.28) nmust

remain nonnegative, or

82 + {1-(Lmax/W cosY)z} (AB g/V)2 >0 (B.29)
2
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or

" 3 (L 2 _ W2 cos2 v)(A g/VWcosy)2 (8.30)
max 82

In the third boundary layer it can be seen that

2 2 2
1.2 = Lmax - chos Y (B.31)
max

Also, the third boundary layer Hamiltonian in (B.3), evaluated at the

conditions under consideration is

H, = ¢+ A L g/VW cos vy 3 O (B.32)
3 B, 2
2 "max
The product AB -L2 is always negative, so (B.30) can be rewritten:
2
o> |r, L g/VW cos | (B.33)
B, 2
2 max

Combining (B.31) and (B.33), we can see that the inequality in (B.30) is
guaranteed.

It can also be shown that the roots of (B.22) have opposite sign sense.
This is required to make a selection from the two solutions for AY4 in (B.27)
The importance of the sign sense of AY can be appreciated by noting that

4

A = 33/dy (B.34)
Yy

where J is the performance index (2.12). Since Yq is the optimal flight
path angle, we have from (B.34) that

83 = XY4(Y-Y3) 20 (B.35)
This indicates that AY4 must have the same sign as (y-Y3). To show that
(B.27) always produces roots of opposite sign, note from (B.23) that A £ 0

since Lmax 2 W within the flight envelope. Also, (B.25) and (B.33) indicate

that C ¢ 0, implying that AC < 0 in (B.28). Because of this, the term under
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=

the radical in (B.27) has a dominating magnitude in that expression,

guaranteeing real roots of opposing sign.
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APPENDIX C

ORDERING OF ENERGY AND HEADING DYNAMICS

This appendix justifies the ordering selected for energy and heading
dynamics. We will examine the eigenvalues associated with a linearized
boundary value problem in which E and B dynamics are both considered on the
same time scale (t =t/¢, in the context of Section 2). 1In this case, the

necessary conditions during climb are:

dE/dt = (Tmax-n)v/w dkE/dr = —3H/3E (C.1)

dg/dt -~ Lz/mV dAB/dr = —3H/3B (C.2)
3H/3h = 0 aH/aL2 =0 (c.3)
= AV - -

H x, cos B + Ayo(v sin B - V, cos YT) + AE(Tmax D)V/W
+ ABLZ/mV +1=0 (C.4)

where lx and ky are defined in (2.20) through (2.26), and

2 2
D= qscDo + KW~ + Lz)/qs (c.5)

The second of equations (C.3) gives

L2 = (psg/4KAE)AB (C.6)

Consider an expansion of the above conditions about the optimal climb solu-

tion at the optimal heading, so that we have

Ap = Ag (E) AB =0
1 —-—
h = hl (E) 9H/3h = 0 L2 = 0
dE/dt = E; (E) B= 8, (c.7)

All of the nominal values in (C.7) are associated with the first boundary
layer solution in Section 2. The linearized dynamics resulting from (C.1)
through (C.3), (C.5) and (C.6), using primes to indicate d(*)/dT, are:
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SE' = (SE'/3E)SE + (3E'/3h)sh = (aﬁl/aE)aE (C.8a)

] -
Sig = -(atl/aE)sxE + f(E,h)SE (C.8b)
58! = (Ssg/IExmvl)st (C.9a)
52y = (1 Jeos E)vl 58 (C.9b)

where Sh has been eliminated by using the first equation in (C.3). The
function f£f(E,h) does not affect the eigenvalues of (C.8). Note that (C.8)
and (C.9) are decoupled. The eigenvalues of (C.8) are

pp = t(aél/aE) (C.10)

and for (C.9), they are

K4

Pg = t/{%x/cos B)Ssg/;EKm (C.11)

where (Xx/cos E) and A, come from (2.25) and (2.32), respectively;

E
Further, both quantities are always negative. It can be seen from Table
5 that, for the problem described in this report, 8 is clearly a faster
variable than E. Note that in the case where relative position dynamics are

ignored [12], we have that Ax = 0 and that E is the faster variable.
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TABLE 5

COMPARISON OF EIGENVALUES ALONG CLIMB PATH FOR AN F-4 AIRCRAFT

Energy (M) PE(l/s) Pe(lls)
6705.6 + 0.0200 + 0.317
12192.0 + 0.0186 + 0.178
18288.0 + 0.0023 + 0.164
24384.0 * 0.0090 + 0.152
29870.4 + 0.00115 + 0.763
30480.0 0* wf

*
For the F-4, 3E1/3E = A

E

1

= 0 in cruise due to the Mach limit.




APPENDIX D

SEPARATION OF ALTITUDE AND FLIGHT PATH ANGLE DYNAMICS

Optimization of h and y dynamics is a classical problem in flight
mechanics. This problem's difficulty lies in the fact that these dynamics
are highly coupled if viewed separately from position and energy dynamics.
This appendix presents summary analysis of the h and y dynamics in the con-
text of relative position dynamics and demonstrates that, while not completely
decoupled, they can still be optimized by singular perturbation methods. A
more detailed development may be found in [25].

D.1l Formulation

In order to simplify the discussion, (2.1 - 2.6) will be specialized to
motion in a vertical plane, with Bo = 1/2 and VT = 0. For this problem the
outer and first boundary layer solutions are as in Section 2 and Appendix A,
with Axo = 0 and Ayo = =1/V,. Satisfaction of boundary conditions on h and y
requires further boundary layer analysis of these dynamics, using L and T as
control variables. It has been shown [7] that if h and y are chosen on the

same time scale:

ezh = V sin v (D.1)

ez; = (L-W cos y)/mV (D.2)

a nonlinear TPBVP results, the solution of which is not available in feedback
form. In hope of obtaining a valid feedback solution, we are led to con-
sider a further separation of h and vy dynamics, amending (D.2) so that vy

varies on a faster time scale than h.
€3y = (L-W cos y)/mV (0. 3)

The validity of the approximation implied in (D.3) will be examined by
analyzing the eigenvalues of the linearized closed loop dynamics along the
climb path. These eigenvalues will be compared to the eigenvalues for the
linearized closed loop dynamics resulting from the control solution when h
and vy are modeled according to (D.l) and (D.2). It is shown that a close
match can be obtained by properly selecting kin (2.12).
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D.2 Eigenvalue Analysis

We first consider an expansion of the second boundary layer necessary
conditions for the formulation in (D.l) and (D.2). After eliminating the
control as a function of states and adjoints, the following fourth order

linear system results:

T ] 0 v 0 T 7 ]
sh [ 1. 0 &h
d Y ) gh/le o 0 g/VllY Y
I = - - (D.4)
Ah Kl 0 0 -gph/le Ah
SA 0 K -V 0
L Y_ L 2 l — . GAY -
where
- 2 2
h=h; (B) K, = -3°H, /3h IE <0
AY = 4m AEl K/ps <O K2 = Ayo Vl - KY g/V1 <9
p = p(h)
b, = 30/3h|_ v, =/28(E-h)
h
Hl = ) V+ A (T-D )V/W+ 1+ &k sin2 Y (D.5)
yo E1 °
The eigenvalues of (D.4) are the roots of
s4 + a 32 +b=0 (D.6)
where
2 - - -
a = g(g/Vy - 20,/0) - Xyo g/kY (0.7)
b=gV. K /A > 0 (D.8)

11y ~

and are arranged symmetrically about the real and imaginary axes. Since it
is always possible to suppress two of these modes by apprepriate choice of
initial conditions on Ah and ny, a necessary condition for the existence of
an asymptotically stable boundary layer solution is that none of the eigen-

values are strictly imaginary. This follows if

or
b> 0and a <0 (D.10)
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An analysis similar to the above was conducted in [7], where relative posi-

tion dynamics were ignored. 1In this case, Ayo = () so that, from (D.7),

a > 0. Thus, the conclusion regarding existence of a boundary layer solution
depends on (D.9), which must be tested for individual aircraft types. When

relative position dynamics are included, the last term in (D.7) is dominant,
and a < 0., Furthermore, it can easily be shown that, for the conditions in

(D.10), the damping ratio is greater than 0,707.

We now consider the boundary layer dynamics for (D.l) and (D.2), but
for the feedback control solution of Appendix B specialized to the same
planar problem. This implies we are using the approximation in (D.3). When
the closed loop dynamics are linearized about the climb path, we obtain the

following second order system:

d (Sh)/dt = V1 Y
(D.11)
d y/dt = 6L/m V

where
SL = —K3 Y - K4 sh

K, = Ks(-xyo v, +2 AElevl/q1 s + 2k)

~ 2,3 z
K, = KS(AyO g /Vl + AEl Ehh)

7

~
[

=./-q, s W2 )\, KV
5 \/ 1 E; 1
B = 32 E/ahzl_
h
1 1

The eigenvalues of the closed loop system are given by the roots of

2
s° + K3 s/mVl + K4/m = 0 (D.13)
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D.3 Numerical Comparison of Eigenvalues

Table D.l1 displays the eigenvalues of (D.6) and (D.13) for k=0, and
those of (D.13) for k=0.89 for five different energy levels along the climb
path. F-8 aircraft data was used for this comparison. Note that for k=0,
the damping ratio obtained using (D.13) is‘approximately half of that ob-
tained from (D.6). Though not apparent from Table 6, the natural fre-

quencies in all cases are equal,

From the second of (D.12), it is apparent that k only affects the
damping ratio and not the natural frequency of the closed loop dynamics cor-
regponding to (D.13). Thus, for a given energy level, it is possible to
choose k so that the eigenvalue of (D.13) match those of (D.6). For
example, in the case of the F-8 aircraft at E = 9112m, the eigenvalues are
matched by selecting k = 0.89. The calculation at other energy levels is
summarized in the last column of Table 6. Note that a reasonably good
approximation to the eigenvalues of (D.6) is obtained at all energy levels.
A better approximation results when k is chosen so that the eigenvalues are
matched at E = 13528m. This approach to approximating the optimization of
h and v 1s closely related to a state constrained matching approach used in
[12]; however, the form of the solution here is much more appropriate for
real time implementation. Trajectory results for k=0 and k=0,89 are given
in {25].
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L6

COMPARISON OF EIGENVALUES FOR h, y BOUNDARY LAYER DYNAMICS

TABLE 6

Energy Level (m) Equation(D.6) Eigenvalues (1/s) Equation (D.13); k=0.89
Equation(D.13), k=0
9112 -.156 * .108 -.082 # 171 -.156 * .108
11320 -.114 * .078 -.064 * .123 -.123 * .063
13528 ~-.089 £ .068 -.048 ¢ .100 -.093 * .062
15737 -.069 = .064 -.032 % .089 -.064 ¢ .070
17945 -.084 £ 072 -.038 ¢ .105 -.067 % .090

S e

¢
£



APPENDIX E

MINIMIZATION OF A HAMILTONIAN FUNCTION WITH ONE UNKNOWN COSTATE

This appendix documents a method for minimizing a Hamiltonian function
with one unknown costate, the procedure having been used in minimizing the
Hamiltonian for the outer solution and first through third boundary layers

of the analysis in this report.
Given the Hamiltonian function

H(x) = £(x) + A g(x) = O (E.1)
The sufficient conditions for the existence of a minimum for (E.l) are
dH/3x = fx + Agx =0 (E.2)

2 2
3°H/8x" = fxx + g, >0 (E.3)

In a free time problem where t does not explicitly appear in H, it 1is also

necesgsary that H=0. Using (E.l1), this leads to

A= —flg , g*0 (E.4)
Using (E.4) in (E.2) and (E.3), we obtain:
9H/3x = fx - (f/g)gx =0 (E.5)
3%H/ox> = £ ~ (£/g)g.. > O (E.6)
XX 8)8xx *
Define the function
L =g/f (E.7)
Taking the first and second partials
3L/3x = [fg_ - gf ]/f2 (E.8)
X X °

d’L/ox” = [, - 8 1/E° - 2f (3L/ox)/f (E.9)
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Setting (E.8) equal to zero gives the same condition as in (E.2) and (E.4).
Condition (E.6) can be rewritten

gf - fg >0 s g>0

XX XX

- fg <0 , g <0 (E.10)

gf x

p.®.9

Using 38L/3x = 0 in (E.9), it can be seen that the following will be equivalant
to (E.10):

2’L/3x® <0, g> 0

2 2

3°L/9x” > 0 s 8<0 (E.11)
From the foregoing, we ¢an conclude that

max {L} , g >0

min {L} s g <0 (E.12)

is equivalent to the conditions in (E.1 - E.3).

99



APPENDIX F

ELIMINATION OF NUMERICAL SINGULARITIES

This appendix describes the measures taken to prevent the appearance
of indeterminate ratios in the control calculations, the presence of which
led to discontinuities in the controls when the alrcraft closely followed

the optimal altitude, heading and flight path angle commands.

The expression for the first boundary layer costate (AE ) is, from (A.38):
1

XEl = -WHO(E, hl) / Vl(Tl-Do) (F.1)
E= Ecurrent
where Ho is the outer solution Hamiltonian and the "1" subscripts indicate
values at first boundary layer optimum conditions. If the aircraft's maxi-
mum velocity cruise point lies on the zero-energy-rate contour, an indeter-
minate ratio results at h=ho, E=E0. The value of XE actually tends toward
zero as the cruise point 1s approached, so before calculating AE , the energy

rate is tested for proximity to zero. If it is too close for a rellable co-

state calculation, AEl is set to zero.

Both the first and second boundary layer solutions specify an optimal
altitude (hl and h2), with h2 > hl as the aircraft heading error approaches
zero. Generally, the second boundary layer optimal altitude (h2) is deter-
mined by solving the following equation, from (A.51), using a step search

in altitude:

h, = arg min {—o/Hl(E,h,B)VK} (F.2)
h
8=8 current
where
|yl = /-qa s WH;(E,h,8)/V K e (F.3)

Since Hl(E,hl,B) > 0 as B ~» B,» (F.2) approaches an indeterminate form. In
the control logic, aircraft heading error is tested for proximity to zero.
If it falls within a certain region hz is set equal to hl, eliminating the

altitude search.
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In the third boundary layer solution, an optimum flight path angle is
calculated by solving, from (B.8):

Y5 = arg max {sin ¥ /Hz(h,E.B,Y)} . sign(hz—h) (F.4)
Y

This is done by a step wise search in the same manner as in equation (F.2)
Again, an indeterminate form appears in (F.4) when h - h2’ since both Y,
and H, > 0. When |h2-h| is small, the current altitude is artifically

2
determined to be

h® = h, + &h, sh >0 (F.5)

2

Requiring Sh to be positive precludes violation of the mach constraint
boundary. Then Y3 and Ah are calculated in the usual manner, but for

o
h=h~, Finally, since both Y3 and Aha are zero for h=h2, Y3 and Ah3 are cor-

rected using a linear interpolation:
Y3 = v5 (h=h))/dh (F.6)

Ah3 = xh3 (h-h,)/sh (F.7)
Although all calculations in the fourth boundary layer are analytic, it
has been found that, due to accumulated numerical inaccuracies in the preced-
ing boundary layer solutions, there is a lack of numerical definition when
the flight path angle error becomes small., When this occurs, the flight path

angle is perturbed:

YO = yy+sign {y=v3} -8y , &y > 0 (F.8)

The optimal horizontal and vertical incremental lifts (6L14 and 6L24) for
this boundary layer are then calculated using Yo according to the procedure

detailed in Appendix B. Then the following corrections are applied:
6Ly, = SL,, ° I(Y-Y3)/5Yl (F.9)

8Ly, 8L, ° I(Y-y3)/6Y| (F.10)
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